
bbc

Adobe Systems Incorporated 1

Adobe®

Untangling Software
Observations on Architecture

Sean Parent
Sr. Computer Scientist II
September 27th, 2003



bbc

Adobe Systems Incorporated 2

— The American Heritage Dictionary, ©2000

“ struc•ture

n. The way in which parts are connected
together to form a whole.

ar•chi•tec•ture

n. Orderly arrangement of parts.”
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Simple Architectural Problem
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Simple Architectural Problem
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Diagram of The Problem
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A More Complicated Problem
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Questions

� Is the cycle an infinite loop? Recursive? Threaded?

� The model and person send to the widget.
� Is there a connection inside the widget?

� Does the model receive when the model sends?
When the user sends? Is what the user sends
displayed by the widget or what the model sends or
both?
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Typical Widget Implementation
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Another Widget Implementation
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Observations

� To understand structure understand connections

� Connections in software can be formed with both
state and logic
�  The Church-Turing Thesis shows these are equivalent

when state and logic are computationally complete
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Understanding Logical Connections

� Functional programming imposes a structure on
connections

� Understanding the nature of these connections
gives insight into working structures
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Functional Dependencies

T f1(T x) {
return f4(f2(x));

}

T f2(T x) {
return f3(x + k);

}

T f3(T x);
T f4(T x);
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Functional Data Flow

T f1(T x) {
return f4(f2(x));

}

T f2(T x) {
return f3(x + k);

}

T f3(T x);
T f4(T x);
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Conditional Data Flow

T f1(T x, bool p) {
return p ? f2(x) : f4(x);

}
T f2(T x) {

return f3(x + k);
}

T f3(T x);
T f4(T x);
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Constraint Representation Flow
(almost)

T f1(T x, bool p) { return p ? f2(x) : f4(x); }
T f2(T x) { return f3(x + k); }
T f3(T x);
T f4(T x);
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Constraint Representation Flow

T f1(T x, bool p) { return p ? f2(x) : f4(x); }
T f2(T x) { return f3(x + k); }
T f3(T x);
T f4(T x);
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Constraint Representation Flow

T f1(T x, bool p) { return p ? f2(x) : f4(x); }
T f2(T x) { return f3(x + k); }
T f3(T x);
T f4(T x);
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Observations

� “Tautological Join”
� A constraint which cannot yield a contradiction
� Interesting tautological join functions: max, ordering, queues

� A functional program can be described as a (potentially)
infinite directed acyclic constraint system with tautological
joins.
� A cycle in the system is the equivalent of an infinite graph

� A finite directed acyclic constraint system with tautological
joins, “tautoldag”, is solvable
� This is not Turing complete (guaranteed to halt)

� There are tautoldags which cannot be simply mapped to a
functional program
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Cross Hierarchy Joins
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One Possible Representation

T f1(T x, bool p, bool q) {
return p ? f2(x, f3) : (q ? f2(x, f4) : f4(x));

}
T f2 (T x, F f) {

return f(x + k);
}
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Beware of Cross Hierarchy Joins
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Observations

� Although I may have named tautoldags - they are not my
discovery:

� Functional Programming works because of tautoldags

� Unix pipes are tautoldags - the queue structure provides
enough “elasticity” to avoid contradictions (deadlocks).

� Implicit hierarchies in object oriented programming work
because they are tautoldags

� Architectural failures are often rooted in feedback loops
and contradictory, or underspecified joins

� Great care must be taken when feedback is required,
through state or logic, to isolate the effects



bbc

Adobe Systems Incorporated 23

Typical Widget Implementation
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Reasonable Widget Implementation
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We’ve Discovered MVC!
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— The Model-View-Controller Design Pattern
according to developer.apple.com

“A view object knows how to display and
possibly edit data from the application’s
model… A controller object acts as the
intermediary between the application’s
view objects and its model objects…
Controllers are often the least reusable
objects in an application, but that’s
acceptable…”
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Ummm…
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Ummm…
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Tools for the New Work™
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Working Architecture
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Feedback Suppression

� Using an “OK” button or other control to latch command
� Action is repeated each time button is pressed

� Resetting the user model to a no-op state
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