
bbc

Adobe Systems Incorporated 1

Adobe®

Untangling Software
Observations on Architecture

Sean Parent
Sr. Computer Scientist II
September 27th, 2003

bbc

Adobe Systems Incorporated 2

— The American Heritage Dictionary, ©2000

“ struc•ture

n. The way in which parts are connected
together to form a whole.

ar•chi•tec•ture

n. Orderly arrangement of parts.”

bbc

Adobe Systems Incorporated 3

Simple Architectural Problem

bbc

Adobe Systems Incorporated 4

Simple Architectural Problem

bbc

Adobe Systems Incorporated 5

Diagram of The Problem

bbc

Adobe Systems Incorporated 6

A More Complicated Problem

bbc

Adobe Systems Incorporated 7

Questions

� Is the cycle an infinite loop? Recursive? Threaded?

� The model and person send to the widget.
� Is there a connection inside the widget?

� Does the model receive when the model sends?
When the user sends? Is what the user sends
displayed by the widget or what the model sends or
both?

bbc

Adobe Systems Incorporated 8

Typical Widget Implementation

bbc

Adobe Systems Incorporated 9

Another Widget Implementation

bbc

Adobe Systems Incorporated 10

Observations

� To understand structure understand connections

� Connections in software can be formed with both
state and logic
� The Church-Turing Thesis shows these are equivalent

when state and logic are computationally complete

bbc

Adobe Systems Incorporated 11

Understanding Logical Connections

� Functional programming imposes a structure on
connections

� Understanding the nature of these connections
gives insight into working structures

bbc

Adobe Systems Incorporated 12

Functional Dependencies

T f1(T x) {
return f4(f2(x));

}

T f2(T x) {
return f3(x + k);

}

T f3(T x);
T f4(T x);

bbc

Adobe Systems Incorporated 13

Functional Data Flow

T f1(T x) {
return f4(f2(x));

}

T f2(T x) {
return f3(x + k);

}

T f3(T x);
T f4(T x);

bbc

Adobe Systems Incorporated 14

Conditional Data Flow

T f1(T x, bool p) {
return p ? f2(x) : f4(x);

}
T f2(T x) {

return f3(x + k);
}

T f3(T x);
T f4(T x);

bbc

Adobe Systems Incorporated 15

Constraint Representation Flow
(almost)

T f1(T x, bool p) { return p ? f2(x) : f4(x); }
T f2(T x) { return f3(x + k); }
T f3(T x);
T f4(T x);

bbc

Adobe Systems Incorporated 16

Constraint Representation Flow

T f1(T x, bool p) { return p ? f2(x) : f4(x); }
T f2(T x) { return f3(x + k); }
T f3(T x);
T f4(T x);

bbc

Adobe Systems Incorporated 17

Constraint Representation Flow

T f1(T x, bool p) { return p ? f2(x) : f4(x); }
T f2(T x) { return f3(x + k); }
T f3(T x);
T f4(T x);

bbc

Adobe Systems Incorporated 18

Observations

� “Tautological Join”
� A constraint which cannot yield a contradiction
� Interesting tautological join functions: max, ordering, queues

� A functional program can be described as a (potentially)
infinite directed acyclic constraint system with tautological
joins.
� A cycle in the system is the equivalent of an infinite graph

� A finite directed acyclic constraint system with tautological
joins, “tautoldag”, is solvable
� This is not Turing complete (guaranteed to halt)

� There are tautoldags which cannot be simply mapped to a
functional program

bbc

Adobe Systems Incorporated 19

Cross Hierarchy Joins

bbc

Adobe Systems Incorporated 20

One Possible Representation

T f1(T x, bool p, bool q) {
return p ? f2(x, f3) : (q ? f2(x, f4) : f4(x));

}
T f2 (T x, F f) {

return f(x + k);
}

bbc

Adobe Systems Incorporated 21

Beware of Cross Hierarchy Joins

bbc

Adobe Systems Incorporated 22

Observations

� Although I may have named tautoldags - they are not my
discovery:

� Functional Programming works because of tautoldags

� Unix pipes are tautoldags - the queue structure provides
enough “elasticity” to avoid contradictions (deadlocks).

� Implicit hierarchies in object oriented programming work
because they are tautoldags

� Architectural failures are often rooted in feedback loops
and contradictory, or underspecified joins

� Great care must be taken when feedback is required,
through state or logic, to isolate the effects

bbc

Adobe Systems Incorporated 23

Typical Widget Implementation

bbc

Adobe Systems Incorporated 24

Reasonable Widget Implementation

bbc

Adobe Systems Incorporated 25

We’ve Discovered MVC!

bbc

Adobe Systems Incorporated 26

— The Model-View-Controller Design Pattern
according to developer.apple.com

“A view object knows how to display and
possibly edit data from the application’s
model… A controller object acts as the
intermediary between the application’s
view objects and its model objects…
Controllers are often the least reusable
objects in an application, but that’s
acceptable…”

bbc

Adobe Systems Incorporated 27

Ummm…

bbc

Adobe Systems Incorporated 28

Ummm…

bbc

Adobe Systems Incorporated 29

bc
Tools for the New Work™

bbc

Adobe Systems Incorporated 30

Working Architecture

bbc

Adobe Systems Incorporated 31

Feedback Suppression

� Using an “OK” button or other control to latch command
� Action is repeated each time button is pressed

� Resetting the user model to a no-op state

bbc

Adobe Systems Incorporated 32

bc
Tools for the New Work™

